

CONSTRUINDO SABERES, FORMANDO PESSOAS E TRANSFORMANDO A PRODUÇÃO ANIMAL

DETERMINATION OF RESIDUAL FEED INTAKE FOR LACTATING BEEF COWS

Danielly Fernanda BROLEZE^{*1}, Luana Lelis SOUZA¹, Mariana Furtado ZORZETTO¹, Flávia Cristina BIS², Sarah Figueiredo Martins BONILHA¹, Maria Eugênia Zerlotti MERCADANTE¹

*corresponding author: dany_broleze@hotmail.com ¹Instituto de Zootecnia, Sertãozinho, São Paulo, Brasil ²Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil

The objective of the present study was to determine the residual feed intake for lactating beef cows. Primiparous Nellore cows (484 \pm 40.9 kg initial body weight; 1120 \pm 37.3 days of age) were evaluated in two consecutive years (27 animals in 2017, and 26 in 2018) through a feed efficiency test using GrowSafe Systems Ltd. The test began at 22 ± 5 days after calving, and was carried out for 81 days. The diet was composed of 90:10 of roughage:concentrate ratio, 72.88% of NDT, and 4.22 Mcal kg⁻¹ of metabolizable energy. Dry matter intake (DMI) was obtained as the average of the valid days. Average daily gain (ADG) was obtained as a linear regression of four body weight records without previous fasting, and metabolic weight (BW^{0.75}) was obtained as α + intercept (ADG x 0.5 x days in the test)^{0.75}. Cows received 20 IU of oxytocin intravenously and were mechanically milked at 63 ± 5 and 84 ± 5 days postpartum. Milk production in 24 hours was corrected for energy (ECMP) using the percentage of milk fat and protein (5.59 ± 1.38% and 3.95 ± 0.31%). Subcutaneous fat thickness was evaluated by ultrasound at 22 \pm 5 and 82 \pm 5 days postpartum, at five anatomical points, obtaining the average body fat thickness (AFT). The DMI, ADG, BW^{0.75}, ECMP and AFT were 12.42 ± 1.48 kg day ¹, 0.624 ± 0.321 kg day⁻¹, 107.43 \pm 6.12 kg, 10.79 \pm 2.36 L, and 6.87 \pm 1.87 mm, respectively. The DMI prediction equation (DMIp) was obtained in PROC GLM, adjusting a multiple regression model of DMI on contemporary group class (GC), ADG, BW^{0.75}, ECMP and AFT. The model explained 53% of DMI variation of the cows, being 27% for BW^{0.75}, 17% for ADG, 8% for GC and 1% for AFT. RFI was obtained as the difference of DMI and DMIp. The average of RFI was 0 ± 0.959 kg day⁻¹ (ranging from -1.997 to 3.444 kg day⁻¹). Cows were classified in negative-RFI (RFI<0) or positive-RFI (RFI>0), and the average of RFI was -0.688 \pm 0.119 and 0.771 \pm 0.126 kg day⁻¹, respectively. Significant differences were observed in DMI (11.7 kg day⁻¹ versus 13.1 kg day⁻¹) and DMI expressed in percentage of body weight (2.41% versus 2.70%). Negative-RFI cows ate 12% DM day⁻¹ less than positive-RFI cows. In conclusion, BW^{0.75} and ADG are the main factors that influence the dry matter intake of lactating Nellore cows.

Keywords: dry matter intake, fat thickness, feed efficiency milk production

Acknowledgments: to FAPESP (Proc. 2015/02066/4) for financial support.

Promoção e Realização:

Apoio Institucional:

